11.4 Double and Half Angle Identities

$\sin 2 \theta$
$\cos 2 \theta$
$\tan 2 \theta$

Ex 1: If $\cos \theta=\frac{\sqrt{5}}{5}$ and $0^{\circ}<\theta<90^{\circ}$, find the exact value of each function. $\sin 2 \theta$ $\cos 2 \theta$

Ex 2: Find the exact value of each! $\sin 22.5$

$$
\cos \frac{7 \pi}{8}
$$

Ex 3: If $\sin \theta=\frac{5}{7}$ and $90^{\circ}<\theta<180^{\circ}$, find the exact value of each function. $\tan 2 \theta$

$$
\tan \frac{\theta}{2}
$$

Ex 4: Verify the following: $\cot x=\frac{\sin 2 x}{1-\cos 2 x}$

Ex 5: Verify the following: $\tan \frac{x}{2}=\frac{1-\cos x}{\sin x}$

Directions: Tell whether each statement is true.

1) $\cos 2\left(20^{\circ}\right)=2 \cos ^{2} 40^{\circ}-1$	2) $\cos \left(70^{\circ}\right)=\cos ^{2} 35^{\circ}-\sin ^{2} 35^{\circ}$	3) $\tan \frac{140^{\circ}}{2}=-\sqrt{\frac{1-\cos 140^{\circ}}{1+\cos 140^{\circ}}}$

Directions: Find the exact value of the given function.

4) $\cos 75^{\circ}$	5) $\sin \frac{5 \pi}{8}$

Directions: For \#6-9: If $\sin x=\frac{3}{5}$ and x is in Quadrant II, find each value. Draw the reference triangle.

6$) \cos 2 x$	7) $\tan 2 x$

| Directions: For \#10-13: If $\cos \theta=-\frac{1}{3}$ and x is in Quadrant II, find each value. Draw the reference
 triangle.
 10) $\cos 2 \theta$
 |
| :--- | :--- |

11.4 Application and Extension

If $\tan \theta=-\frac{1}{3}$ and x is in Quadrant II, find each value. Draw the reference triangle.

1) $\cos 2 x$
2) $\tan \frac{x}{2}$
3) Mr. Allen is a tremendous golfer. He can hit the ball with an initial velocity of 50 feet per second. The distance that a golf ball travels is found by the formula $d=\frac{v_{0}}{g} \sin 2 \theta$, where v_{0} is the initial velocity, g is the acceleration due to gravity and θ is the measure of the angle that the inititial path of the ball makes with the ground. The acceleration due to gravity is $32 \mathrm{ft} / \mathrm{s}^{2}$.
a. Write an expression for the distance the ball travels in terms of θ.
b. Use a calculator to find the distance Mr. Allen's ball traveled if the angle between the initial path of the ball and the ground measured 60°.
4) For each equation try the following values $\left(x=0, \pi, \frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{6}\right)$ and calculate both the left and right sides of the equation. If the equation is an identity, VERIFY IT! If it is not an identity, find a value of x for which both sides are defined but not equal.
a) $\sin 4 x=4 \sin x \cos x$
b) $\sin 2 x=(\tan x)(1+\cos 2 x)$

BRING THE PAIN! Use your graphing calculator and determine which of the following three equations is a trig identity. Then verify it!
$\tan 2 x=\frac{2}{\tan x-\cot x}$
$\cot 2 x=\frac{\tan x\left(\cot ^{2} x-1\right)}{2}$
$\sin ^{2} x=\frac{1-\cos 2 x}{2}$

