11.5 Trigonometric Equations

Write your questions here!

Ex 1: Find all exact solutions for $0 \leq x \leq 2 \pi$.
$8 \sin x=6 \sin x-1$

Ex 2: Find all exact solutions for $0^{\circ} \leq x \leq 360^{\circ}$.
$2 \cos ^{2} x-5 \cos x=-2$

Ex 3: Find all exact solutions for $0 \leq x \leq 2 \pi$.
$2 \cos ^{2} x+\cos x=0$

Ex 4: Find all exact solutions for $0^{\circ} \leq x \leq 360^{\circ}$. (hint: use double angle identity) $\sin ^{2} x+\cos 2 x-\cos x=0$

Ex 5: Approximate all solutions for $0^{\circ} \leq x \leq 360^{\circ}$.
$3 \sin x-2=7 \sin x-3$

Ex 6: Approximate all solutions for $0^{\circ} \leq x \leq 360^{\circ}$. (hint: use quadratic formula) $5 \cos ^{2} x-3=4 \cos x$

Ex 7: Find ALL exact solutions.

$$
\cot ^{2} x-3=0
$$

Ex 8: Find ALL exact solutions.
$4 \cos ^{2} x \tan ^{2} x=3$

SUMMARY:

Directions: Find all exact solutions for $0 \leq x \leq 2 \pi$.

1) $3 \sec ^{2} x-4=0$	2) $4 \cos ^{2} x-2=0$

3) $2 \sin ^{2} x+5 \sin x=3$
4) $4=\frac{1+\sin x}{\cos x}+\frac{\cos x}{1+\sin x}$

Directions: Find all exact solutions for $0^{\circ} \leq x \leq 360^{\circ}$.
5) $\cos ^{2} x=1-\sin x$
7) $\sin x-2 \sin x \cos x=0$
6) $3 \cot ^{2} x-1=0$
8) $\tan x=-2 \sin x$
10) $5 \sin ^{2} x+3 \sin x=1$
11) $6 \sin ^{2} x+1-\cos ^{2} x=2$
12) $16 \tan ^{2} x=5$

Directions: Find all exact solutions.
13) $2 \cos ^{2} x+\cos x=0$
14) $3 \sin x=2 \cos ^{2} x$
15) $\cos 2 x+5 \cos x=2$
16) $\sqrt{3} \tan x+1=0$
1)

2)

11.5 Application and Extension

1) Find all exact solutions for $0^{\circ} \leq x \leq 360^{\circ}$.

$$
\sqrt{3} \tan x+1=0
$$

2) Find all exact solutions.
$2 \cos ^{2} x=\sin x+1$
3) Solve $\sqrt{2} \sin x-1=0$ for $0^{\circ} \leq x \leq 360^{\circ}$

Solve $\sqrt{2} \sin (B L O B)-1=0$ for $B L O B$ for $0^{\circ} \leq B L O B \leq 360^{\circ}$

Solve $\sqrt{2} \sin (2 x+5)-1=0$ (Hint: Pretend $2 x+5=B L O B$. Once you solve for BLOB, make your answer $=2 x+5$
4) The tide (depth of the ocean near the shore) near Lake Erie, where Sully is from, can be modeled by $d=35-28 \cos \frac{\pi}{6.2} t$, where d is the water depth in feet and t is the time in hours (where $t=0$ represents 12:00 $A M)$.
a) At what time(s) will the tide be 14 feet?
b) Use a graphing calculator (try www.desmos.com) and find what the low tide will be and at what time(s) it occurs.
5) Mr. Sullivan has a student he calls ROLLER COASTER. The reason is that he produces work in highs and lows. He develops a formula to predict ROLLER COASTER's work output which is: $m=5 \sin \left(\frac{4 \pi}{365} d\right)+5$, where d represents the day of the year ($d=1$ is January 1) and m represents the number of mastery checks passed on that day.
a) On what day(s) does ROLLER COASTER pass 3 mastery checks?
b) b) Use a graphing calculator (try www.desmos.com...seriously...its awesome) and find what the highest number of mastery checks ROLLER COASTER will pass on one day. What day(s) does that occur?

