SEMESTER 1

Unit 1: Intro to Pre-Calc

1. Linear Functions

Slope Intercept Form

a. Write the equation of the line in slope intercept form that is perpendicular to $y=2 x-5$ and contains $(-50,10)$

Standard Form	Point Slope Form
b. Graph $3 x+2 y=10$	c. Write the equation of the line in point slope form that contains the points (-50,-49) and (35,53)

2. Regression (Best Fit Line/Curve)

The following table gives the number of motor vehicle thefts (in thousands) in the U.S. for the years 1983 1993. $x=1$ represents 1983. Use the regression capabilities of your calculator to fit a cubic model to this data.

Year	1	3	4	7	8	9	10	11
Vehicle Thefts	1008	1103	1224	1565	1636	1662	1611	1561

a. Graph the data with a friendly window. Record here
b. Use regression and write the equation of your model. (Round to three decimal places)

$$
V(t)=
$$

c. What does $V(5.5)$ mean? Find it.

d. Find the time(s) in which there will be1400 thousand auto thefts.
e. What does the y-intercept mean in this situation?
f. Predict the auto thefts in 1995.
3. Factoring Basics: Solve the following by factoring.
a. $x^{2}-9 x=0$
b. $x^{2}-9 x-112=0$
c. $2 x^{2}-17 x=-35$

Unit 2: Functions and Limits

For 4-5, identify the domain and range of each function. Use both interval notation and inequality notation.

Domain: Interval: \qquad
Inequality: \qquad

Range:

Interval: \qquad
Inequality:
6) Using the graph on the right, give the value of each statement.
a. $\lim _{x \rightarrow 1^{-}} f(x)=$
b. $f(-1)=$
c. $\lim _{x \rightarrow-1} f(x)=$
d. $\lim _{x \rightarrow-2} f(x)=$
e. $f(1)=$
f. $\lim _{x \rightarrow 1^{+}} f(x)=$

For questions 7-14, refer to the graph of $f(x)$

7. State the intervals where $f(x)$ is continuous.
8. State the values of x where the function is discontinuous and label them as removable or non-removable discontinuities.

9. $\lim _{x \rightarrow 2} f(x)=$
10. $f(0)=$
11. $\lim _{x \rightarrow-2} f(x)=$

For 15-16, graph the function and determine if it has points of discontinuity. If there is a discontinuity, tell what type of discontinuity it is and its x-value. Clearly mark all asymptotes with a dotted line.
15. $f(x)=\frac{2}{x}$
10. $\lim _{x \rightarrow 2^{+}} f(x)=$
11. $\lim _{x \rightarrow 2^{-}} f(x)=$
16. $f(x)=\frac{x}{x^{2}-4}$

Unit 3: Function Analysis

For 17-19, find the domain of the given function. Use interval notation.
17. $f(x)=\sqrt{10-x}$
18. $f(x)=\frac{x}{x-5}$
19. $f(x)=\frac{\sqrt{x-2}}{(x+7)(x-8)}$

For 20-21, find the range of the function. Use interval notation.
20. $f(x)=(x-4)^{2}+4$
21. $f(x)=\sqrt{9+x}$
22. Sketch the piecewise function $f(x)= \begin{cases}x^{3}-1 & x \leq 0 \\ \sqrt{x}+1 & x>0\end{cases}$
a. $f(2)=$
b. $f(-2)=$
c. $f(0)=$

23. Label all local and absolute maximums and minimums.
a.

b.

c.

Unit 4: Function Algebra

24. $f(x)=3 x+11$ and $g(x)=5 x-1$
$f \cdot g=$
25. $f(x)=4 x^{2}+2 x+3 ; g(x)=2 x-4$
$f \circ g=$
$\frac{f}{g}=$

For 26, confirm that f and g are inverses by showing the $f(g(x))=x$
26. $f(x)=2 x+9$ and $g(x)=\frac{x-9}{2}$

For 27-32, if $f(x)=2 x-5$ and the $g(x)=x^{2}+2 x-3$, find the following...

27. $f(2)$	28. $g(-2)$	$29 . f(g(0))$
$30 . f-g$	$31 . f(x+h)$	$32 .(f+g)(2)$

33. Is $f(x)=\frac{x+1}{x^{2}-1}$ even, odd, or neither. Justify your answer!

Transformations

34. $y=2(x-5)^{3}-4$

Name function:___
Translation:

Scale:

Reflection:

35. $f(x)=-|3 x+6|+5$

Name function: \qquad
Translation:

Scale:

Reflection:

36. $y=\sqrt{-x}+3$

Name function: \qquad
Translation:

Scale:

Reflection:
SKETCH GRAPH!

Unit 5: Polynomials

Graph on your calculator to solve the following.
37. $0=x^{4}+2 x^{2}-3 x-1$
38. $3 x^{6}-2 x^{5}=8-3 x^{2}$
39. Use the graph of the function to determine at least one zero, then find the exact values of all the zeros using the Factor Theorem. $f(x)=7 x^{4}+20 x^{3}-24 x^{2}-60 x+9$

40. Factor the following.
a. $6 x^{2}+13 x y-5 y^{2}$
b. $5 x^{3}-30 x^{2}-8 x+48$
c. $216+x^{3}$
41. Factor to solve the following.
a. $4 x^{4}+64 x=0$
b. $x^{3}-6 x^{2}+8 x=0$
c. $x^{4}-11 x^{2}=-30$

